6 research outputs found

    CoMoFoD #x2014; New database for copy-move forgery detection

    Get PDF
    Due to the availability of many sophisticated image processing tools, a digital image forgery is nowadays very often used. One of the common forgery method is a copy-move forgery, where part of an image is copied to another location in the same image with the aim of hiding or adding some image content. Numerous algorithms have been proposed for a copy-move forgery detection (CMFD), but there exist only few benchmarking databases for algorithms evaluation. We developed new database for a CMFD that consist of 260 forged image sets. Every image set includes forged image, two masks and original image. Images are grouped in 5 categories according to applied manipulation: translation, rotation, scaling, combination and distortion. Also, postprocessing methods, such as JPEG compression, blurring, noise adding, color reduction etc., are applied at all forged and original images. In this paper we present database organization and content, creation of forged images, postprocessing methods, and database testing. CoMoFoD database is available at http://www.vcl.fer.hr/comofodMinistry of Science, Education and Sport, China; project numbers: 036-0361630-1635 and 036-0361630-164

    Robust Image Encryption Based on Balanced Cellular Automaton and Pixel Separation

    Get PDF
    The purpose of image encryption is to protect content from unauthorized access. Image encryption is usually done by pixel scrambling and confusion, so process is possible to reverse only by knowing secret information. In this paper we introduce a new method for digital image encryption, based on a 2D cellular automaton and pixel separation. Novelty in the proposed method lies in the application of the balanced 2D cellular automata with extended Moore neighborhood separately on each level of pseudorandom key-image. This process extends key space several times when compared to the previous methods. Furthermore, pixel separation is introduced to define operation for each pixel of the source image. Thanks to pixel separation, decryption process is more difficult to conduct without knowing secret information. Moreover, encryption is robust against different statistical attacks and analysis, does not affect image quality and can cope with loss of encrypted image content
    corecore